Kinematic modeling of a 5-DOF parallel mechanism for semi-spherical workspace

O. Piccin, B. Bayle, B. Maurin, M. de Mathelin

ARTICLE INFO

Article history:
Received 29 January 2008
Received in revised form 12 November 2008
Accepted 26 November 2008
Available online 13 January 2009

Keywords:
Lower-mobility parallel mechanism
Spherical workspace manipulator

ABSTRACT

This paper presents the architecture synthesis and the kinematic modeling of a new five-degree-of-freedom parallel manipulator. The proposed mechanism is a 3T2R device intended to position and orient a line in space. It has been originally designed for a medical application in which the aforementioned line corresponds to the axis of a surgical needle. The mechanism is characterized by an asymmetric arrangement of its legs and wider mobility ranges than usually obtained with a parallel structure. Its inverse and forward kinematic models are derived, together with the assembly modes complying with the practical limitations of the mechanism.

1. Introduction

Medical interventions and particularly minimally invasive surgery have become an important application field of robotics. While pioneer achievements mainly involved off-the-shelf robotic manipulators or modified industrial arms, it is now well established that the functions required for a given medical application are better performed with a specialized mechanical structure. The mechanism presented in this paper is part of a robotic assistant developed for the diagnosis and therapy of tumors in the context of interventional radiology [1,2]. This system is designed so as to perform teleoperated percutaneous needle insertions under medical image guidance. It is based on an original robotic platform, which positions and orients a needle insertion tool.

There have already been a few systems developed for interventional radiology, generally based on a platform on which a needle insertion device is mounted. The PAKY system [3] and the AcuBot [4] are among the first systems compatible with computed tomography (CT). The PAKY is based on a remote center of motion (RCM) device serially mounted on a passive arm attached to the operation bed. The AcuBot system adds to the PAKY a pre-positioning stage for the coarse placement near the intervention site. The innomotion robot [5] also features a RCM structure. A passive holder with two degrees of freedom (DOF) is used to position the actuated system in an optimal way given the shape and the volume of CT-scanners and MRI machines to which it is compatible. The B-Rob I [6] is a CT-compatible robotic system for robot-assisted biopsy based on a PPRP structure to obtain the coarse positioning of the needle near the entry point and a 3-DOF needle positioning unit to achieve the fine orientation of the needle. For these two previous systems, the needle is inserted manually. The LPR [7] is a 5-DOF patient-mounted robot compatible with MRI. Two DOF are obtained with motorized linear translations at the surface of the patient body. The orientation at the entry point and the insertion are obtained with pneumatic actuators driving two intersecting revolute joints and a prismatic pair along the needle axis. The MrBot [8] is a 3T3R parallel structure holding a 1-DOF needle driver for prostate percutaneous procedures. This robot is a 5-legged platform with a 4UPS-UPU architecture.
Like the previous systems, the developed robotic device must allow to position and orient the axis of a surgical needle as planned by the clinician. The mobilities required to insert the needle in the pointed anatomical target are provided by a separate tool not described in this document.

It is important to identify the associated medical constraints to perform the mechanism synthesis [9]. Percutaneous needle insertions require image guidance to complete safely. At the moment, the most widely used imaging modality is computed tomography. During an intervention the patient is placed within the ring of the CT scanner. To cope with security constraints and provide a natural compensation of accidental motions of the patient, e.g. coughing, the proposed mechanism is mounted on the patient’s body to which it is strapped [2]. The free space within the CT-scanner tunnel can be assimilated to a semi-spherical zone with a radius of 200 mm, centered at the entry point. The mobility imposed by the access to the organs requires a large needle incidence: 0–65° in the CT-scanner plane and ±25° in the perpendicular plane. Another important feature is the possibility to change the entry point position on the patient’s skin within a range of ±10 mm around a predefined point. To our knowledge, none of the existing robots dedicated to needle placement fulfills all these demanding mobility requirements.

This paper presents the architecture synthesis and the kinematic modeling of a system designed to comply with the previous constraints. It is a novel 5-DOF parallel mechanism, with an asymmetric structure. Though relatively complex the closed-form of both the inverse and forward kinematic models can be derived. The text is organized as follows. In Section 2, the mechanism design is derived from a kinematic decomposition of the task performed by the robot. Then, the designed structure is parameterized in Section 3 and the inverse and forward kinematic models are calculated in Section 4. Finally, Section 5 discusses the conclusions and the perspectives of this work.

2. Architecture synthesis

2.1. Required mobilities and synthesis

We considered candidate systems with five DOF in order to position and orient a line in space. Serial mechanisms were found to be inappropriate for our application, mainly because of their inherent flexibility. In contrast, parallel mechanisms like Gough-Stewart platforms exhibit a higher stiffness and a better working accuracy, but are limited by a small workspace, a higher design complexity and a difficult forward kinematic modeling. To overcome some of these shortcomings, research on lower-mobility parallel mechanisms has recently drawn a lot of interest [10–12] but most of the proposed mechanisms have fully-symmetrical architectures [13,14]. For such mechanisms, type synthesis based on the constraint-synthesis method [15] or the Lie subgroup synthesis method [16,17] are quite powerful to enumerate every parallel candidate mechanisms with identical legs structures. However, to cope with specific requirements like the ones of our application, it is interesting to consider also asymmetric mechanisms with different sorts of legs. Then, the number of possible structures increases rapidly and a specific method has to be used.

In order to obtain the most promising lower-mobility parallel mechanisms with 3T2R mobility, we introduce a kinematic decomposition of the task. Let \(\mathcal{F}_0 = (O_0, x_0, y_0, z_0) \) and \(\mathcal{F}_f = (O_f, x_f, y_f, z_f) \) be respectively the base and the platform frames of the mechanism to be synthesized. The line \(\mathcal{L} \) to be positioned and oriented is defined by the axis \((O_f, z_f) \). Let \((M) \) be a moving plane passing through the axis \((O_f, y_f) \) and containing \(O_f \). As the mechanism has five DOF and does not need to set the rotation of the line \(\mathcal{L} \) about its axis, the axis \((O_f, y_f) \) can be defined without loss of generality in order to lie in \((M) \).

Under these assumptions, the transformation from frame \(\mathcal{F}_0 \) to frame \(\mathcal{F}_f \) can be decomposed as follows (Fig. 1):

\[
\begin{align*}
\mathcal{F}_0 & \xrightarrow{\text{Rot}(y_0, o)} \mathcal{F}_\varphi \\
\mathcal{F}_\varphi & \xrightarrow{\text{Tr}(y_0, t_1)\text{Tr}(z_0, t_2)\text{Rot}(x_0, \psi)} \mathcal{F}_\psi \\
\mathcal{F}_\psi & \xrightarrow{\text{Rot}(y_f, o)} \mathcal{F}_f,
\end{align*}
\]

(1)

Fig. 1. Task decomposition.
where $\text{Rot}(x, \theta)$ and $\text{Tri}(x, t)$ respectively represent an x-axis rotation of angle θ and an x-axis translation of magnitude t. The reference frames F_ϕ and F_ψ are such that $F_\phi = (O_\phi, x_\phi, y_\phi, z_\phi)$ and $F_\psi = (O_\psi, x_\psi, y_\psi, z_\psi)$ with $O_\phi = O_0, O_\psi = O_f, y_\phi = y_\psi, x_\phi = x_\psi$ and $y_\phi = y_f$.

2.2. Ideal form of solutions

From the presented decomposition scheme the desired mechanism can be obtained with a planar mechanism to orient and position a line (coordinates t_1, t_2 and ψ) in conjunction with a spatial mechanism to swivel the planar linkage (angle ϕ) and orient the line (angle σ). The function of the planar mechanism is to set the coordinates t_1, t_2 and ψ. The only planar 3-DOF mechanism with one independent loop is the 6-bar linkage [18]. The resulting kinematic chain is composed of six joints including possibly revolute or prismatic pairs. The moving platform can then be connected to the base with two RRR or RPR legs. The function of the spatial mechanism is then to set the remaining mobilities ϕ and σ that are obtained by adding the rotation axis A_1 and A_2 about y_0 and y_f, as described in Fig. 1. In theory, a rotative actuation about these two axes would suffice, but in practice this solution is not satisfactory as it generates important loads on the actuators. It is particularly noticeable for the motor attached to A_1, when an effort applied along the line is out of the plane (M). Instead, it is proposed to set the remaining mobilities ϕ and ψ with a third kinematic chain. The ideal architecture is presented in Fig. 2 using revolute and prismatic pairs. Notice that for modeling simplicity the joints connecting the two legs of the planar mechanism should intersect as well as the joints connecting the three legs to the platform. The architecture solution is shown with two UPU legs constituting the moving planar mechanism and a third SPU leg. This form of solution can be seen as ideal since there exists particular geometric conditions such as intersecting axes which lead to some simplifications in the kinematic models.

The mobility analysis of the third leg is presented hereafter. When the three parameters t_1, t_2 and ψ are set by the planar mechanism, the platform is connected to the ground by a first kinematic bond of mobility $m_1 = 2$ corresponding to the rotations about A_1 and A_2 and by a second kinematic bond relative to the third leg with a mobility $m_2 = 6$ that can be calculated with the Grübler’s formula: $m = 6(n - j) + m_1 + m_2$ where $m = 2, n = 1$ and $j = 2$ represent the platform mobility, the number of moving links and kinematic bonds. It should be noted that the third leg is positioned some distance away from the plane (O_0, x_0, z_0) which corresponds approximately to the CT image plane. Would the third leg be symmetrically attached to the base and the platform, the ideal form of architecture solution would be a 3-UPU mechanism with a U joint replacing the spherical joint of the third leg. The reason for this asymmetric arrangement of the third leg is mainly to avoid the presence of metal parts or electric devices in the CT plane and thus limit image artefacts.

According to the previous synthesis, we consider a 3T2R 5-DOF mechanism that allows: (1) to position a point O_f of a line whose axis is along vector z_f; (2) to orient this line by two successive rotations parameterized by two angles α and β such that

\[
\mathcal{F}_0 \xrightarrow{\text{Rot}(x_0, \alpha)} \mathcal{F}_2 \xrightarrow{\text{Rot}(y_0, \beta)} \mathcal{F}_f.
\]

However, as explained in the next paragraph, practical conditions for intersecting axis and the use of prismatic joints were not met on the fabricated prototype leading to an alternative architecture.

Fig. 2. Ideal form of architecture solution presented with 2-UPU and 1-SPU legs.
2.3. Proposed solution and fabricated prototype

From a kinematic viewpoint the most demanding specification for the mechanism is the needle angulation of 0–65° in the CT-scanner plane and ±25° in the perpendicular plane. The choice of actuators is central on the final architecture selection to provide a mechanism with reduced self-collisions and the required motion ranges. As linear actuators could not be integrated into the fabricated prototype due to their too large length in retracted position, specific actuation units were developed using rotary piezoelectric motors and so the prismatic joints of the UPU and SPU legs were replaced by revolute joints. Another concern relates to the selection of the actuated joints on the mechanism. There are at most 20 possibilities to locate the three actuators for the planar 6-bar linkage. However, placing motors on the two joints connected to the base link is impractical because the base link is attached to the patient and the motors would collide when the plane defined by the linkage swivel about a base line. Consequently, the remaining interesting possibilities for actuation are: S_1: RRRRRR, S_2: RRRRR, S_3: RRRRRR and S_4: RRRRRR. Among these closely resembling arrangements, the solution S_2 with two actuators on the first RRR chain and the last motor on the second chain has been selected. Concerning the third chain with a SRR architecture, the actuated joints have been set to SRR to locate the motors after the spherical joint. It should be noted that the proposed mechanism is overconstrained since it features a full cycle mobility $m = 5$ while not satisfying the Grubler’s general mobility criterion. The number h of overconstraints of a mechanism with n links and j kinematic parameters is $h = m + 6q - j$ where q denotes the number of independent kinematic loops that can be calculated as $q = j - n + 1$ [18]. With the proposed mechanism we have $h = 1$ overconstraint coming from the first two 5R legs. For the prototype construction, this overconstraint has not been eliminated since it improves the global rigidity of the planar mechanism.

To limit self-collisions and allow actuators integration the axes of the revolute joints of the U pairs were offset as shown in Fig. 3a. Notice that having floating motors on the mechanism is not really a problem since the application only requires slow motions. The proposed parallel mechanism is finally composed of 16 revolute joints, five of which are actuated as indicated in Fig. 3a. With the proposed structure, the angles x and β respectively vary in the ranges 0–65° and ±25°, which is quite remarkable for a parallel robot. Fig. 3b shows the fabricated prototype of the mechanism in the CT-scanner ring with a needle guide mounted on the platform during an experimental evaluation of the system [2]. The geometric parameters of the constructed system are presented in the next section and the corresponding dimensions are provided in Table A.2.

3. System description

The following notational conventions will be used:

- the coordinates of a vector \mathbf{AB}, expressed in \mathcal{F}_i, are denoted as $\mathbf{1AB}$. Its components are $\mathbf{1AB}_x$, $\mathbf{1AB}_y$, $\mathbf{1AB}_z$ and its Euclidean norm is $||\mathbf{AB}||$.
- c_i, s_i, t_i, c_{ij} and s_{ij} are abbreviations for $\cos(\theta_i), \sin(\theta_i), \tan\frac{\theta_i}{2}, \cos(\theta_i + \theta_j)$ and $\sin(\theta_i + \theta_j)$ for any $i, j \in \mathbb{N}$.
- \mathcal{F}_i refers to the joint coupling the $(i - 1)$th link to the ith link. There are only revolute joints in the proposed mechanism. Their rotation axis are oriented as indicated by the arrows in Fig. 4.
- θ_i denotes the angular parameter of the joint \mathcal{F}_i. Depending on whether the joint is passive or actuated, parameter θ_i is respectively denoted by p_i or q_i.

A frame \mathcal{F}_i is attached to each link and the homogeneous transformation between frames \mathcal{F}_{i-1} and \mathcal{F}_i is denoted by $^{i-1}T_i$. The corresponding rotation matrix is denoted as $^{i-1}R_i$. The reference position is denoted by $^{i-1}T_i(0)$ which corresponds to a simple configuration chosen for the successive links $i - 1$ and i. In the following, it will be the initial fully extended configuration (see Fig. A.1) and every angular parameter θ_i will be measured with respect to its corresponding reference position.

![Fig. 3. Solid model and prototype of the mechanism in the CT-scanner ring.](image-url)
The construction of homogeneous matrices is performed using the product of exponentials: the rigid transformation describing the pose of a frame F_i relative to F_{i-1} is

$$i^{-1}T_i(\theta) = e^{\hat{S}_{i-1} T_i(\theta)}.$$

where \hat{S}_{i-1} is the homogeneous matrix of the unit twist representing f_i \cite{4}. To simplify both the reference position definition and calculations, rotation matrices at initial configuration are set to identities in $i^{-1}T_i(0)$.

The geometry of each leg, referred to as C_1, C_2 and C_3, is precised in Table A.1. It should be noted that in the reference open-loop configuration of Fig. A.1, all the local frames are parallel to the base frame. Using relation (3) and the proposed parameterization, the homogeneous transformations of the serial kinematic chains C_1, C_2 and C_3 can be evaluated. Upon loops closure (see Fig. 4), the chains C_1 and C_2 always stay in the (M)-plane defined by (O, z, y). The base frame F_0 and the platform frame F_f represented in this figure will be used in the next section for the position analysis of the chains C_1 through C_3.

4. Kinematic modeling

The position and the orientation of the platform with respect to the base could be represented with the homogeneous matrix 0^T_f or, with a minimal set of five parameters, using the position of O_f and the angles α and β defined by Eq. (2). For the following calculations, we introduce an alternative parameterization defined by the position of O_f and the vector z_f normal to the platform. The components of z_f in F_0 can be obtained from the last column of the rotation matrix, i.e.

$$0^z z_f = [c z a - s x c x a - s x c z \beta]^T.$$

4.1. Inverse kinematics

The inverse kinematics problem can be stated as finding $[q_3 \ q_4 \ q_8 \ q_{14} \ q_{15}]^T$ such that, given the pose parameters $0^O_0 O_f$ and $0^z z_f$,

$$0^T_f \begin{bmatrix} z_f \\ \theta_f \end{bmatrix} = \begin{bmatrix} 0^z z_f \\ 0 \end{bmatrix}, \quad 0^T_f \begin{bmatrix} 0^O_0 O_f \\ 0 \end{bmatrix} = \begin{bmatrix} 0^O_0 O_f \\ 0 \end{bmatrix}.$$ \hspace{1cm} (4)

This problem is solved in three steps: calculation of (i) the parameters of C_1 and C_2 in the (M)-plane; (ii) the angle p_1 (or p_6) corresponding to the rotation about A_1; (iii) the parameters of C_3.

4.1.1. Calculation of the sum $\Sigma_{2, 3, 4} = p_2 + q_3 + q_4$

The chains C_1 and C_2 are connected to the base via two revolute joints whose axes are coincident with A_1. Similarly, C_1 and C_2 are connected to the platform via two revolute joints whose axes are coincident with A_2 and orthogonal to z_f. From this special arrangement of C_1 and C_2, it follows that $p_1 = p_6$ and $p_3 = p_{10}$, and that

$$y_5 \cdot z_f = 0.$$ \hspace{1cm} (5)

Upon calculation of the projection of y_5 and z_f in F_1, we obtain the following equations\footnote{The homogeneous matrix 0^T_f between the base and the platform, computed from the chain C_k, is written $0^T_fC_k$.}
\[1 T_{2c1}^2 T_{3c1}^3 T_{4c1}^4 T_{5c1} \begin{bmatrix} 5 y_5 \\ 0 \end{bmatrix} = \begin{bmatrix} 0 & C_{2,3,4} & S_{2,3,4} \\ 0 & 0 & 0 \end{bmatrix}, \quad 1 T_{0c1}^2 0 z_f = \begin{bmatrix} 0 & 0 & z_{j,1} - z_{j,2} \\ 0 & 0 & 0 \end{bmatrix}. \]

Eq. (5) can then be written \(0 z_{j,y}^1,0 z_{j,y}^2,0 z_{j,y}^3 = 0 \), from which one can obtain

\[\Sigma_{2,3,4} = p_2 + q_3 + q_4 = \arctan 2(-0 z_{j,y}^1,0 z_{j,y}^2,0 z_{j,y}^3), \]

where \(\arctan 2 \) is the two-argument arc tangent function defined in \([-\pi, \pi]\).

4.1.2. Calculation of the angles \(p_1, p_2, q_3, \) and \(q_4 \)

Writing \(O_1, O_f \) via the two different paths \(\mathcal{P}_1 = O_1 \to O_2 \to O_3 \to O_4 \to O_5 \to O_f \) and \(\mathcal{P}_2 = O_1 \to O_6 \to O_f \) (see Fig. A.1) leads to

\[O_1 O_f = O_6 O_f - O_0 O_1, \]

\[a_2 z_1 + a_3 z_2 + a_5 z_3 + a_6 y_5 = O_6 O_f + a_0 y_0 - a_1 z_0, \]

which can be projected in \(\mathcal{P}_1 \)

\[\begin{bmatrix} \mathbf{1} & \mathbf{0} & \mathbf{0} & \mathbf{-1} & \mathbf{0} \end{bmatrix} = \begin{bmatrix} 1 T_{2c1}^2 T_{3c1}^3 T_{4c1}^4 T_{5c1} \end{bmatrix} \begin{bmatrix} 0 \\ 1 \end{bmatrix}, \quad \begin{bmatrix} \mathbf{1} & \mathbf{0} & \mathbf{0} & \mathbf{-1} & \mathbf{0} \end{bmatrix} = \begin{bmatrix} 1 T_{0c1}^2 0 z_f - 0 z_f O_1 \end{bmatrix}. \]

The resulting system of equations is then written as

\[0 = \mathbf{0} z_{j,y}^1,0 z_{j,y}^2,0 z_{j,y}^3 - \left(\mathbf{0} z_{j,y}^1,0 z_{j,y}^2,0 z_{j,y}^3 - a_1\right) s_1, \]

\[-a_3 s_2 - a_4 s_2 = \mu_1, \]

\[a_3 c_2 + a_4 c_2 = v_1, \]

where \(\mu_1 \) and \(v_1 \) can be easily obtained from the previously computed terms. Then \(a_2^2 + a_3^2 + 2 a_3 a_4 c_3 = \mu_1^2 + v_1^2 \) from which the solution for \(q_3 \) is

\[q_3 = \pm \arccos \left(\frac{\mu_1^2 + v_1^2 - a_2^2 - a_3^2}{2 a_3 a_4}\right). \]

The preferred solution is chosen in order to have a larger available free space under the platform. In this case, we have \(q_3 > 0 \).

To calculate \(p_2 \) when \(q_3 \) is known, Eqs. (15) and (16) can be converted into a linear system with respect to \(s_2 \) and \(c_2 \) which results in

\[s_2 = \frac{(a_1 + a_4 c_3)\mu_1 + a_4 s_2 v_1}{a_2^2 + a_4^2 + 2 a_4 a_4 c_3}, \quad c_2 = \frac{-a_4 s_2 \mu_1 - (a_3 + a_4 c_3) v_1}{a_2^2 + a_4^2 + 2 a_4 a_4 c_3}. \]

The denominators are equal and positive and so \(p_2 \) can be determined as

\[p_2 = \arctan 2 \left(-a_3 + a_4 c_3, a_4 s_2 v_1, a_3 s_2 \mu_1 + (a_1 + a_4 c_3) v_1\right). \]

Finally, the solution for \(q_4 \) can be computed as

\[q_4 = \Sigma_{2,3,4} - p_2 - q_3. \]

4.1.3. Calculation of the angles \(p_7, q_8, \) and \(p_9 \)

Due to the symmetric architecture of the 6-bar mechanism, the angles \(p_7, q_8, \) and \(p_9 \) of the chain \(C_2 \) can be obtained analogously.
\[p_7 = \arctan 2 \left(-\left(a_3 + a_4c_8 \right) \mu_2 - a_8 s_8 v_2, -a_4 s_8 \mu_2 + \left(a_3 + a_4c_8 \right) v_2 \right), \]

\[q_8 = \pm \arccos \left(\frac{\mu_2^2 + v_2^2 - a_3^2 - a_4^2}{2a_3 a_4} \right), \]

\[p_9 = \arctan 2 \left(-0z_f_{[y]}^0 z_f_{[x]} s_1 + 0z_f_{[z]} c_1 \right) - p_7 - q_8. \]

4.1.4. Angle between the platform and the \((M) \)-plane

The last unknown for C1 and C2 is \(p_5 = p_{10} \). Using the projection of \(z_f \) in \(\mathcal{F} \), and the forward kinematics of the chain C1 or C2, it comes that

\[\begin{align*}
0z_f_{[x]} c_1 - 0z_f_{[z]} s_1 &= s_5, \quad (21) \\
0z_f_{[y]} &= -s_2 s_4 c_5, \quad (22) \\
0z_f_{[y]} s_1 + 0z_f_{[z]} c_1 &= c_2 s_4 c_5. \quad (23)
\end{align*} \]

Upon combining Eqs. (21)–(23), the expression of \(p_5 \) is written as

\[p_5 = \arctan 2 \left(0z_f_{[x]} c_1 - 0z_f_{[z]} s_1, 0z_f_{[x]} s_1 c_2 s_4 - 0z_f_{[y]} s_2 s_4 + 0z_f_{[z]} c_1 c_2 s_4 \right). \quad (24) \]

4.1.5. Study of C3

The last parameters to be calculated are those of the chain C3, namely \(p_{11}, p_{12}, p_{13}, q_{14}, q_{15} \), and \(p_{16} \). Starting from the platform, the arrangement of the first four links of the chain C3 is similar to those of the chains C1 or C2. The resolution for \(q_{14}, q_{15} \), and \(p_{16} \) can be performed analogously using a loop closure equation written from \(O_{11} \) via \(C_1 \). This situation occurs when the line passing through \(O_{11} \) and \(O_{16} \) becomes orthogonal to the line passing through \(O_{15} \) and \(O_{16} \). When \(b_3 c_{14.15} + b_4 c_{15} + b_5 \neq 0 \), \(p_{16} \) can be calculated as

\[p_{16} = \arctan 2 \left(-16O_{16}O_{11}[x], -16O_{16}O_{11}[z] \right). \quad (27) \]

Next, one can observe that vector \(O_{16}O_{11} \) is only parameterized by \(q_{14} \) and \(q_{15} \), and can be computed in \(\mathcal{F}_{15} \) either using the known components of \(O_{16}O_{11} \) in \(\mathcal{F}_{16} \) or via C3. The resulting relations are written as

\[b_3 s_{14.15} + b_4 s_{15} = 16O_{16}O_{11}[x], \quad (28) \]

\[0 = 16O_{16}O_{11}[y] c_{16} - 16O_{16}O_{11}[z] s_{16}, \quad (29) \]

\[-b_3 c_{14.15} - b_4 c_{15} = 16O_{16}O_{11}[x] s_{16} + 16O_{16}O_{11}[y] c_{16} + b_5. \quad (30) \]

These relations are analogous to Eqs. (11)–(13) and can be solved similarly. The angles \(q_{14} \) and \(q_{15} \) are computed as

\[q_{14} = \pm \arccos \left(\frac{\mu_2^2 + v_2^2 - b_5^2 - b_4^2}{2b_3 b_4} \right), \quad (31) \]

\[q_{15} = \arctan 2 \left((b_3 c_{14} + b_4) \mu_3 + b_3 s_{14}, b_3 s_{14} \right). \quad (32) \]

where \(\mu_3 \) and \(v_3 \) are respectively the right-hand side terms of Eqs. (28) and (30). The preferred solution for \(q_{14} \) is chosen positive so as to obtain a configuration leaving \(O_{14} \) on the right of the line passing through \(O_{11} \) and \(O_{15} \). Finally, the spherical joint parameters identification is completed by the inspection of the terms of the matrix \(^6T_{13} \) evaluated via the paths \(\varphi_5 = O_0 \rightarrow O_1 \rightarrow O_{16} \rightarrow O_{15} \rightarrow O_{14} \) and \(\varphi_6 = O_0 \rightarrow O_{11} \rightarrow O_{12} \rightarrow O_{13} \). The homogeneous matrix \(^6T_{13} \) calculated via \(\varphi_6 \) is a function of already known parameters from C1 and C3. When calculated via \(\varphi_5 \), \(^6T_{13} \) is a function of the unknown parameters \(p_{11}, p_{12} \) and \(p_{13} \).
This homogeneous matrix corresponds to a ZYX-Euler angles convention whose parameters are

$$\begin{pmatrix}
C_{11}C_{12} & -S_{11}C_{13} + C_{11}S_{12}S_{13} & S_{11}S_{13} + C_{11}S_{12}C_{13} & -b_0 \\
S_{11}C_{12} & C_{11}C_{13} + S_{11}S_{12}S_{13} & -C_{11}S_{13} + S_{11}S_{12}C_{13} & b_1 \\
-S_{12} & C_{12}S_{13} & C_{12}C_{13} & b_2 \\
0 & 0 & 0 & 1
\end{pmatrix}.$$ \(33\)

The forward kinematics problem may be stated as finding all the possible pose parameters \(0O_0, 0O_f\) and \(0z_f\) corresponding to the values of the actuated joints angles \(q_3, q_4, q_8, q_{14}\) and \(q_{15}\). It is well established that the forward kinematics of a parallel manipulator is generally a difficult problem with multiple solutions.
4.3.1. Study of C1 and C2 in the (M)-plane

For the given values of the actuated joints angles \(q_4, q_5\) and \(q_6\), the objective is to compute the passive joint angles \(p_2, p_7\) and \(p_9\) of the planar mechanism constituted by C1 and C2. Suppose that the kinematic loop has virtually been opened at the joint \(J_9\). With the remaining passive joints, the curves generated by \(O_9\) in the full range of motion of the two sub-assemblies are two circles centered about \(O_2\) and \(O_7\). The solution for the passive angles \(p_2, p_7\) and \(p_9\) can be obtained by determining the intersection of these two circles. With the geometry of the problem in mind, algebraic solution can be developed accordingly.

The development of Eq. (42) takes the form (see (A.2)).

The projections of \(O_9\) in \(F_4\) computed via C1 and C2 are

\[
\begin{bmatrix}
 0 \\
 -a_2 s_2 - a_5 s_{2.3.4} + 2a_6 s_{2.3.4} \\
 a_2 c_2 + a_4 c_{2.3.4} + 2a_6 s_{2.3.4}
\end{bmatrix},
\begin{bmatrix}
 0 \\
 2a_6 - a_2 s_7 - a_4 s_{7.8} \\
 a_3 c_7 + a_4 c_{7.8}
\end{bmatrix}
\]

Equating the squared norm of both expressions (see (A.2)) leads to a transcendental equation of the form

\[
\mu_4 c_7 + v_4 s_7 + \gamma_4 = 0.
\]

which can be solved classically using \(t_7 = \tan\frac{\mu_4}{\mu_4 - \gamma_4}\).

\[
t_7 = \frac{v_4 \pm \sqrt{\mu_4^2 + v_4^2 - \gamma_4^2}}{\mu_4 - \gamma_4}.
\]

Depending on the sign of \(\delta_4 = \mu_4^2 + v_4^2 - \gamma_4^2\), there are three possible cases:

(i) if \(\delta_4 < 0\), there is no solution to the forward kinematics (the radius of both circles are too small and thus the mechanism cannot be assembled);
(ii) if \(\delta_4 = 0\), there is a unique solution (the circles are tangent to each other) and \(O_9\) is on the line passing through \(O_2\) and \(O_7\);
(iii) if \(\delta_4 > 0\), which is generally the case, both solutions are valid with the platform either above or beneath the line passing through \(O_2\) and \(O_7\).

Hence, when \(\delta_4 \geq 0\)

\[
p_7 = 2 \arctan\left(\frac{v_4 \pm \sqrt{\delta_4}}{\mu_4 - \gamma_4}\right).
\]

In normal conditions, the platform should be above the line passing through \(O_2\) and \(O_7\), which can be restated as \(O_9 \cdot z_1 > 0\). Then, from Eq. (35) right, \(p_7\) should be chosen so that it verifies

\[
(a_3 + a_4 c_8)c_7 - a_4 s_7 s_7 > 0.
\]

As a consequence, the mechanism has only one assembly mode that verifies the aforementioned condition.

When \(p_7\) is known Eq. (35) can be combined to form a system of linear equations in \(s_2\) and \(c_2\) that can be solved to determine

\[
p_2 = \arctan 2 (-(a_1 + a_4 c_3 + 2a_6 c_{3.4}) v_5 - (a_4 s_3 - 2a_6 c_{3.4}) v_5, -(a_4 s_3 - 2a_6 c_{3.4}) v_5 + (a_3 + a_4 c_3 + 2a_6 c_{3.4}) v_5).
\]

Where \(\mu_2 = 2a_6 - a_2 s_7 - a_4 s_{7.8}\) and \(v_5 = a_3 c_7 + a_4 c_{7.8}\).

Finally, the solution for \(q_9\) can be computed as

\[
p_9 = p_2 + q_3 + q_4 - p_7 - q_8.
\]

As expected, controlling the parameters \(q_3, q_4\) and \(q_6\) constrains the first three DOF but \(p_1\) (or \(p_6\)) and \(p_3\) (or \(p_{10}\) are still to be found.

4.3.2. Loop closure with C3

Suppose that the mechanism formed by C1, C2 and C3 is opened at point \(O_{17}\). The locus of \(O_{17}\) is a circle \(C_1\) about \(J_9\) with a fixed radius when the planar mechanism composed of C1 and C2 rotates about the passive joint \(J_1\). Besides, when \(q_{14}\) and \(q_{15}\) are fixed, the locus of \(O_{17}\) is a sphere \(R_1\) centered on \(O_{11}\) with radius \(|\mathbf{O}_{11} \mathbf{O}_{17}|\). The assembly modes correspond to the intersections between the sphere and the circle which are either two points or a single point (circle tangent to the sphere) or an empty set (radii too small). This geometric property of the mechanism can be formulated algebraically in writing that the squared norm of \(\mathbf{O}_{11} \mathbf{O}_{17}\) can be calculated via the chains C1 and C3 with the paths \(\mathcal{P}_7 = \{O_{11} \rightarrow O_9 \rightarrow O_1 \rightarrow O_2 \rightarrow O_3 \rightarrow O_4 \rightarrow O_5 \rightarrow O_{17}\}\) and \(\mathcal{P}_8 = \{O_{11} \rightarrow O_{14} \rightarrow O_{15} \rightarrow O_{16} \rightarrow O_{17}\}\)

\[
|\mathbf{O}_{11} \mathbf{O}_{17}|_{\mathcal{P}_7}^2 - |\mathbf{O}_{11} \mathbf{O}_{17}|_{\mathcal{P}_8}^2 = 0.
\]

The simplest forms of the components of \(\mathbf{O}_{11} \mathbf{O}_{17} \mathcal{P}_7\) and \(\mathbf{O}_{11} \mathbf{O}_{17} \mathcal{P}_8\) are respectively obtained with a projection in \(\mathcal{P}_0\) and \(\mathcal{P}_{13}\). The development of Eq. (42) takes the form (see (A.2))
\[\mu_6 c_1 + v_6 s_1 + \gamma_6 = 0,\]
which is solved for \(p_1\) in the same way as previously for \(p_7\). When \(\delta_6 = \mu_6^2 + v_6^2 - \gamma_6^2\) is positive, two real solutions for \(p_1\) can be calculated

\[p_1 = 2 \text{arctan}\left(\frac{v_6 \pm \sqrt{\delta_6}}{\mu_6 - \gamma_6}\right).\]

They correspond to assembly modes which are symmetric with respect to the plane passing through \(O_{11}\) and the axis of \(\mathscr{J}_1\).

In normal conditions, the platform should be above the aforementioned plane which can be formulated as \((y_1 \times \mathbf{O}_1\mathbf{O}_{11}) \cdot \mathbf{z}_1 \geq 0\) or, equivalently \((x_1 \cdot \mathbf{O}_1\mathbf{O}_{11}) \geq 0\) which yields

\[b_0 c_1 + (b_2 - a_1) s_1 \geq 0.\]

Thus, \(p_1\) should be chosen so that it verifies relation (45), resulting in one single assembly mode.

Once \(p_1\) is chosen, the platform orientation \(p_5\) still has to be identified. Now suppose that the mechanism is opened at point \(O_{16}\). The locus of \(O_{16}\) is a circle \(\mathscr{C}_2\) about the axis of \(\mathscr{J}_2\), with a fixed radius, when the platform rotates about the passive joint \(\mathscr{J}_5\). Besides, when \(q_{14}\) and \(q_{15}\) are fixed, the locus of \(O_{16}\) is a sphere \(\mathscr{S}_2\) centered on \(O_{11}\) with radius \(||\mathbf{O}_{11}\mathbf{O}_{10}||\). As a valid assembly mode existed for the mechanism with the previously chosen value of \(p_1\), the intersection between the sphere \(\mathscr{S}_2\) and the circle \(\mathscr{C}_2\) is either a single point (circle tangent to the sphere) or two points. These last two solutions correspond to assembly modes of the robot which are symmetric with respect to the plane passing through \(O_{11}\) and the axis of \(\mathscr{J}_5\). In the same way as for \(p_1\), the geometric property of the mechanism yields an equation analogous to (42) in which \(O_{17}\) is replaced by \(O_{16}\). Its comes that

\[\mu_6 c_5 + v_6 s_5 + \gamma_6 = 0,\]
where \(\mu_6, v_6\) and \(\gamma_6\) can be calculated from the already known parameters (see (A.2)), which is then solved for \(p_5\) to obtain

\[p_5 = 2 \text{arctan}\left(\frac{v_6 \pm \sqrt{\mu_6^2 + v_6^2 - \gamma_6^2}}{\mu_6 - \gamma_6}\right).\]

These two solutions correspond to assembly modes of the robot which are symmetric with respect to the plane passing through \(O_{11}\) and the axis of \(\mathscr{J}_5\). In normal conditions, the platform should be above the aforementioned plane. This condition can be formulated as \((y_5 \times \mathbf{O}_{11}\mathbf{O}_{17}) \cdot \mathbf{O}_{16}\mathbf{O}_{17} \geq 0\) or, equivalently \((x_5 \cdot \mathbf{O}_{11}\mathbf{O}_{17}) \cdot \mathbf{x}_5 \geq 0\) or \(z_5 \cdot \mathbf{O}_{11}\mathbf{O}_{17} \geq 0\) which yields a relation of the form

\[\mu_6 c_5 + v_6 s_5 \geq 0,\]
where \(\mu_6\) and \(v_6\) can be calculated from the already known terms. Hence, \(p_5\) should be chosen so that it verifies relation (48), resulting in one single assembly mode.

Finally, the total number of assembly modes is \(2^3 - 8\) solutions. but limitations such as mechanical stops or self-collisions eliminate some of them. The constraints corresponding to Eqs. (39), (45) and (48) limit the choice to a unique assembly mode which complies with the practical limitations. At last, the pose parameters can be calculated as follows

\[
\begin{align*}
0\mathbf{z}_f &= \begin{bmatrix}
c_1 s_5 + s_1 c_2 c_3 c_4 c_5 \\
- s_2 s_3 s_4 c_5 \\
- s_1 s_5 + c_1 c_2 c_3 c_4 c_5
\end{bmatrix},
0\mathbf{O}_f\mathbf{O}_j &= \begin{bmatrix}
(a_2 + a_1 c_2 + a_4 c_3 + a_5 c_2 c_3 + a_6 s_2 s_3 c_4) s_1 \\
-a_0 - a_3 s_2 - a_4 s_2 c_3 - a_5 s_2 c_3 c_4 + a_6 s_2 c_4 \\
-a_0 - a_3 s_2 - a_4 s_2 c_3 - a_5 s_2 c_3 c_4 + a_6 s_2 c_4
\end{bmatrix}.
\end{align*}
\]

5. Conclusion

In this paper, a novel 5-DOF parallel system has been presented. It has been originally designed to cope with the constraints of body mounted robots for CT-guided interventions. More generally, the proposed mechanical structure is suitable to achieve tasks which do not require self-rotation of the robot platform. The special asymmetric arrangement of the legs enables a wide range of evolution for the needle angulation. The system mobility has been obtained using only revolute joints and rotary actuators which simplifies the robot building. The closed-form inverse and forward kinematic models have been derived using a geometrical approach. Explicit conditions for assembly modes selection have also been presented. Ongoing tasks on this structure include the calculation of the system Jacobian matrix which opens perspectives in terms of analysis and control. From the differential model, the study of the system singularities will possibly be coped, for instance by considering interval analysis methods [22], though at the moment it remains a largely open problem.

Acknowledgements

The authors wish to thank the Alsace Region and the CNRS-ROBEA program for the financial support of this research work, and Pr. Afshin Gangi for his medical expertise and for his constant enthusiasm.
Appendix A

A.1. Joints screw axis, reference frames and dimensional parameters

The last rows in Table A.1 indicate the location of the origin O_f of the platform frame \mathcal{F}_f with respect to the base frame \mathcal{F}_0.

A.2. Intermediate calculation steps

To improve the text readability, some intermediate calculation steps are given hereafter. In paragraph 4.3.1 the developed version of Eq. (36) gives μ_4, ν_4 and γ_4

$$4a_0^2 + a_4^2 + a_0^2 - 4a_0a_3s_7 - 4a_0a_4s_{7,8} + 2a_3a_4c_8 = a_5^2 + a_7^2 + 2a_3a_4c_3 + 4a_3a_5s_{3,4} + 4a_4a_6s_4. \quad (A.1)$$

Table A.1

<table>
<thead>
<tr>
<th>Frame</th>
<th>Position $^0\mathbf{O}_i\mathbf{O}_0$</th>
<th>Axis</th>
<th>Ang. Par.</th>
<th>Frame</th>
<th>Position $^0\mathbf{O}_i\mathbf{O}_0$</th>
<th>Axis</th>
<th>Ang. Par.</th>
</tr>
</thead>
<tbody>
<tr>
<td>\mathcal{F}_1</td>
<td>$[0 - a_0 \ a_1]^T$</td>
<td>$[1 0 0]^T_1$</td>
<td>p_1</td>
<td>\mathcal{F}_6</td>
<td>$[0 a_0 \ a_1]^T_1$</td>
<td>$[1 0 0]^T_1$</td>
<td>p_6</td>
</tr>
<tr>
<td>\mathcal{F}_2</td>
<td>$[0 - a_0 \sum_{j=1}^{3} a_j]^T_1$</td>
<td>$[1 0 0]^T_2$</td>
<td>p_2</td>
<td>\mathcal{F}_7</td>
<td>$[0 a_0 \sum_{j=1}^{3} a_j]^T_1$</td>
<td>$[1 0 0]^T_1$</td>
<td>p_7</td>
</tr>
<tr>
<td>\mathcal{F}_3</td>
<td>$[0 - a_0 \sum_{j=1}^{3} a_j]^T_1$</td>
<td>$[1 0 0]^T_3$</td>
<td>q_1</td>
<td>\mathcal{F}_8</td>
<td>$[0 a_0 \sum_{j=1}^{3} a_j]^T_1$</td>
<td>$[1 0 0]^T_1$</td>
<td>q_8</td>
</tr>
<tr>
<td>\mathcal{F}_4</td>
<td>$[0 - a_0 \sum_{j=1}^{3} a_j]^T_1$</td>
<td>$[1 0 0]^T_4$</td>
<td>q_4</td>
<td>\mathcal{F}_9</td>
<td>$[0 a_0 \sum_{j=1}^{3} a_j]^T_1$</td>
<td>$[1 0 0]^T_1$</td>
<td>p_9</td>
</tr>
<tr>
<td>\mathcal{F}_5</td>
<td>$[0 - a_0 \sum_{j=1}^{3} a_j]^T_1$</td>
<td>$[1 0 0]^T_5$</td>
<td>p_5</td>
<td>\mathcal{F}_{10}</td>
<td>$[0 a_0 \sum_{j=1}^{3} a_j]^T_1$</td>
<td>$[1 0 0]^T_1$</td>
<td>p_{10}</td>
</tr>
</tbody>
</table>

Table A.2

<table>
<thead>
<tr>
<th>Frame</th>
<th>Position $^0\mathbf{O}_i\mathbf{O}_0$</th>
<th>Axis</th>
<th>Ang. Par.</th>
</tr>
</thead>
<tbody>
<tr>
<td>\mathcal{F}_{11}</td>
<td>$[-b_0 b_1 \ b_2]^T_1$</td>
<td>$[1 0 0]^T_1$</td>
<td>p_{11}</td>
</tr>
<tr>
<td>\mathcal{F}_{12}</td>
<td>$[-b_0 b_1 \ b_2]^T_1$</td>
<td>$[1 0 0]^T_1$</td>
<td>p_{12}</td>
</tr>
<tr>
<td>\mathcal{F}_{13}</td>
<td>$[-b_0 b_1 \ b_2]^T_1$</td>
<td>$[1 0 0]^T_1$</td>
<td>p_{13}</td>
</tr>
<tr>
<td>\mathcal{F}_{14}</td>
<td>$[-b_0 b_1 \sum_{j=2}^{3} b_j]^T_1$</td>
<td>$[1 0 0]^T_1$</td>
<td>q_{14}</td>
</tr>
<tr>
<td>\mathcal{F}_{15}</td>
<td>$[-b_0 b_1 \sum_{j=2}^{3} b_j]^T_1$</td>
<td>$[1 0 0]^T_1$</td>
<td>q_{15}</td>
</tr>
<tr>
<td>\mathcal{F}_{16}</td>
<td>$[-b_0 b_1 \sum_{j=2}^{3} b_j]^T_1$</td>
<td>$[1 0 0]^T_1$</td>
<td>p_{16}</td>
</tr>
</tbody>
</table>

Table A.2

<table>
<thead>
<tr>
<th>Parameter i</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>a_i (mm)</td>
<td>73.8</td>
<td>7.0</td>
<td>40.0</td>
<td>67.0</td>
<td>55.0</td>
<td>28.0</td>
<td>70.0</td>
<td></td>
</tr>
<tr>
<td>b_i (mm)</td>
<td>67.6</td>
<td>40.0</td>
<td>63.0</td>
<td>75.0</td>
<td>60.0</td>
<td>28.0</td>
<td>104.0</td>
<td>40.0</td>
</tr>
</tbody>
</table>

Fig. A.1. Screw axis definition for chains C1, C2 and C3 sketched in reference position.
In paragraph 4.3.2 the developed version of Eq. (43) gives \(\mu_0, v_0 \) and \(\gamma_0 \)

\[
\begin{align*}
2(a_1 - b_2)(a_5c_{2,3,4} + a_6s_{2,3,4} + b_7s_{2,3,4} + a_4c_{2,3} + a_3c_2 + a_2)c_1 \\
+ 2b_0(a_2 + a_3c_2 + a_4c_{2,3} + a_5c_{2,3,4} + a_6s_{2,3,4} + b_7s_{2,3,4})s_1 + (a_1 - b_2)^2 + b_0^2 \\
+ (-a_0 - a_1s_2 - a_2s_{2,3,4} - a_3s_{2,3,4} + a_4c_{2,3,4} + b_7s_{2,3,4})s_1 + (a_1 - b_2)^2 + b_0^2 \\
- (bs_{14} + bs_{14,15} + bs_{c14,15})^2 - (b_1 + b_3c_{14,15} + b_5c_{14,15} - bs_{14,15})^2 = 0.
\end{align*}
\] (A.2)

In paragraph 4.3.2 the developed version of Eq. (46) gives \(\mu_0, v_0 \) and \(\gamma_0 \)

\[
\begin{align*}
(b_0c_1 + (b_2 - a_1)s_1 - b_1c_5)^2 + (-a_0 - a_1s_2 - a_2s_{2,3,4} + a_3s_{2,3,4} + a_4c_{2,3,4} - b_1 - b_3s_{2,3,4}s_5 + b_7c_{2,3,4})^2 \\
+ (a_1 + a_3c_2 + a_4c_{2,3} + a_5c_{2,3,4} + a_6s_{2,3,4} + b_0s_1 + b_5c_{2,3,4}s_5 + b_7s_{2,3,4} + (a_1 - b_2)c_1)^2 \\
- (bs_{14} + bs_{14,15})^2 - (b_3 + b_4c_{14} + b_5c_{14,15})^2 = 0.
\end{align*}
\] (A.3)

References

